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The pressure change produced from steady-state flow at a tubular reactor inlet 
alters the pressure profile and makes it dependent on time, t. This perturbation travels 
down the reactor, and at time fL arrives at the outlet. This time tL is the so-called 
“response time”. A pressure-programmed gas chromatographic column is a good 
example of this type of tubular reactor. 

The treatment of non-steady flow is much more difficult. Non-steady profiles 
have been obtained as a numerical solution for a non-linear partial differential 
equation. Special cases, which correspond to sudden pressure jumps at the inlet’ or to 
continuous pressure programming’, have been solved. 

Response time has been measured in different cases: (a) discontinuous inlet- 
pressure changes in packed columns’ or capillary columns3 and (b) pressure 
programming in packed columns4. 

This paper describes a method for calculating non-steady pressure profiles in 
chromatographic columns. The pressure profiles are calculated in accordance with the 
response time for the case of a continuous pressure variation. 

EXPERIMENTAL AND RESULTS 

The pressure profile at any given time t is assumed to be the section of the graph 
of the function p(x,t) which is represented by a sum of the form: 

p(x,t> = PO(G) + Pl(XJ) + ... + PnW 

where x is the distance between a point 
column; p,,(x,t) represents the stationary 
which may vary according to 

Pe = Pea + W) 

in the column and the inlet section of the 
profile at any time t with an inlet pressure 

(1) 

(2) 

The expression of the function h(t) reflects the type of pressure variation imposed. 
The additional terms pi(x,t) allow the description of the exact pressure profile 
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observed. Thus, it is possible to consider a “quasi-unchanged” pressure distribution. 
This distribution is always described by the basic equation 

K a2p2 ap 
gcP=at (3) 

where IC is the column permeability and q the carrier gas viscosity. 
Let us introduce the following set of reduced variables, each of which is 

dimensionless: 

P* = PIPS (reduced pressure) 

x* = x/L (reduced distance) (4) 

t* = t/z (reduced time) 

where ps is defined as the outlet pressure. The reference time r is defined as 

t = 2r7LZ/Jcp, (5) 

where L is the column length. When these reduced variables are used, the mathematical 
analysis is simplified and eqn. 1 is transformed to 

a2p2 ap 
ax2 = at (6) 

if the asterisk is removed. The term p,,(x,t) corresponding to steady-state flow, at time 
t, is the solution of the equation 

After two integrations we obtain the quadratic form 

p; = A - Bx 

where 

A = p$(O,t) = p: 

and 

B = p: - p;(l,t) = p,’ - 

so that eqn. 8 may be written as 

Pd.4 = I PZ - bf - l)xl 

(8) 

(9) 
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which represents the classical James-Martin expression’. The shape of the function 
p,,(x) is given in Fig. 1 and a net decompression appears near the column outlet. 

Determination of p1 
Only p1 will be calculated. We substitute the sum p. + p1 for the variable p in 

eqn. (6). After linearization, the following equations, with dimensionless parameters, 
are obtained: 

azp2 
p= 

aw + 2popl) ape 2PePk - 2PePkX 
a2 = at = 21~: - (~2 - ljxl+ 

(10) 

where p, is the derivative of the function pe with respect to reduced time. A first 
integration with respect to x gives 

ati; + 2~~~~1 2PePk 
ax = ct + be” _ 1j2 . PO + 

where M. is a constant. A second integration gives 

p; + 2pop1 = ax + p + 4. 
PePe 

5 

3 (p,’ _ 1)3 F - Pi 
‘( ) 

(11) 

(12) 

where B is a constant. 
For x = 0, we have p. = pe and p1 = 0, hence p may be calculated as the initial 

conditions: 

p = pf - f . @2pfL1)3 
e ( > !$ _ p,” 

P(X $1 

(13) 

P, 

pi_-_______________‘______________ 
4 

1 

0 L x 

Fig. 1. Plot of p(q) versus x. 



156 NOTES 

TABLE I 

EFFECTS OF THE REFERENCE TIME t AND THE PROGRAMMING RATE b ON THE TERM pi 

5 el* Pe b** X* PO Pl 

4 I 2 10m3 0.5 1.58 -1.94 
40 10-l _ _ _ _ - 1.94 

400 10-Z _ _ _ _ - 1.94 
4 I 2 1O-3 0.25 1.80 -1.42 

_ _ 1.2 - _ 1.15 -2.00 
4 1 2 1om3 0.5 1.58 - 1.94 

_ _ _ 1o-2 _ _ -1.94 
_ _ _ 10-l _ _ -1.94 
40 10-i 2 10-a 0.25 1.80 - 1.42 
- - _ _ 0.50 1.58 - 1.94 
- - _ _ 0.75 1.32 -1.50 

10m4 

10-s 
lo-* 
1om4 
1o-4 
1o-4 
10-3 
1o-2 
lO-3 
10-a 
10-a 

* Values are expressed in s atm m- ’ for a column of length L = 2 m and outlet pressurep, = 1 atm. 
l * Values arc expressed in atm s- ‘. 

For x = 1, p. = 1 and p1 = 0, we obtain 

/b-p:+4 3.(p;::l)3(;+g-P:) 
and finally 

2PePk 4.x 
p1 = 3po(p,2 - 1)3 [ 

-+(x-l)($P:)+($pl)] 
5 

(14) 

(15) 

p1 is a linear function of the space variable x and is dependent on the type of 
programming of the inlet pressure. 

TABLE II 

VALIDITY OF THE APPROXIMATION pz z p; + 2p,,p,: MAXIMUM VALUES OF b FOR 

DIFFERENT VALUES OF r 

Column length L = 2 m and outlet pressure p. = 1 atm. 

5 KW Maximum b** 

400 0.01 5 lo-3 
40 0.1 5 lo-* 

4 1 5 10-l 

l Values are expressed in s atm m m2 for a column of length L = 2 m and outlet pressurep, = 1 atm. 

” Values are exnressed in atm s- ‘. 
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Application to linear ji’ow programming 
Linear programming was chosen to test the present method; the function h(t) is 

written as 

h(t) = bt 

Two parameters have an important effect on the term p1 (see Table I); the reference 
time, r = 2qL2/1cp,, and the programming rate, b. The validity of the approximation 

P ’ z pz + 2pOpl is limited by the values of 6. Table II shows the maximum values 
of b for different values K/V, with an error for 0.3% in the pressurep, the inlet pressure 
being 2 atm. 

From Table III, it is possible to compare the present method (method A) with 
a numerical method (method B) used in previous work3. Method B gives a polynomial 
development of the pressure profile. There is good agreement between the two 
methods. 

CONCLUSION 

A continuous change in flow causes a departure from a steady state. The 
assumption that the time-varying pressure profile along the column is the same as that 
existing in constant-pressure operation for a given inlet pressure value is not 
satisfactory6, so we have added a perturbation term to the classical pressure profile of 
James and Martin5 to obtain the actual profile. A flow variation at the column inlet 
give rise to a perturbation that reaches the column outlet at a time tL, which is usually 
small. The present method is rigorously applicable to pressure distributions after this 
time. In the theory, a second-order term is neglected owing to its smallness when the 
programming rate is not too high; when the permeability of a column decreases, the 
maximum programming rate likewise decreases. The results are in good agreement 
with those obtained by numerical methods. 
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