CHROM. 21 057

Note

Non-steady pressure profiles in chromatographic columns

B. DEVALLEZ* and J. GUION
Laboratoire de Chimie Physique, Université de Nice, Parc Valrose, 06034 Nice (France) and
G. COGNET
ENSEM, 2 Rue de la Citadelle, 54000 Nancy (France)
(First received June 15th, 1988; revised manuscript received October 18th, 1988)

The pressure change produced from steady-state flow at a tubular reactor inlet alters the pressure profile and makes it dependent on time, t. This perturbation travels down the reactor, and at time t_L arrives at the outlet. This time t_L is the so-called "response time". A pressure-programmed gas chromatographic column is a good example of this type of tubular reactor.

The treatment of non-steady flow is much more difficult. Non-steady profiles have been obtained as a numerical solution for a non-linear partial differential equation. Special cases, which correspond to sudden pressure jumps at the inlet¹ or to continuous pressure programming², have been solved.

Response time has been measured in different cases: (a) discontinuous inletpressure changes in packed columns¹ or capillary columns³ and (b) pressure programming in packed columns⁴.

This paper describes a method for calculating non-steady pressure profiles in chromatographic columns. The pressure profiles are calculated in accordance with the response time for the case of a continuous pressure variation.

EXPERIMENTAL AND RESULTS

The pressure profile at any given time t is assumed to be the section of the graph of the function p(x,t) which is represented by a sum of the form:

$$p(x,t) = p_0(x,t) + p_1(x,t) + \dots + p_n(x,t)$$
(1)

where x is the distance between a point in the column and the inlet section of the column; $p_0(x,t)$ represents the stationary profile at any time t with an inlet pressure which may vary according to

$$p_{\rm e} = p_{\rm e0} + h(t) \tag{2}$$

The expression of the function h(t) reflects the type of pressure variation imposed.

The additional terms $p_i(x,t)$ allow the description of the exact pressure profile

observed. Thus, it is possible to consider a "quasi-unchanged" pressure distribution. This distribution is always described by the basic equation

$$\frac{\kappa}{2\eta} \cdot \frac{\partial^2 p^2}{\partial x^2} = \frac{\partial p}{\partial t}$$
(3)

where κ is the column permeability and η the carrier gas viscosity.

Let us introduce the following set of reduced variables, each of which is dimensionless:

$$p^* = p/p_s$$
 (reduced pressure)
 $x^* = x/L$ (reduced distance) (4)
 $t^* = t/\tau$ (reduced time)

where p_s is defined as the outlet pressure. The reference time τ is defined as

$$\tau = 2\eta L^2 / \kappa p_{\rm s} \tag{5}$$

where L is the column length. When these reduced variables are used, the mathematical analysis is simplified and eqn. 1 is transformed to

$$\frac{\partial^2 p^2}{\partial x^2} = \frac{\partial p}{\partial t} \tag{6}$$

if the asterisk is removed. The term $p_0(x,t)$ corresponding to steady-state flow, at time t, is the solution of the equation

$$\frac{\partial^2 p_0^2(x,t)}{\partial x^2} = 0 \tag{7}$$

After two integrations we obtain the quadratic form

$$p_0^2 = A - Bx \tag{8}$$

where

$$A = p_0^2(0,t) = p_e^2$$

and

$$B = p_e^2 - p_0^2(1,t) = p_e^2 - 1$$

so that eqn. 8 may be written as

 $p_0(x) = |p_e^2 - (p_e^2 - 1)x|^{\frac{1}{2}}$ (9)

which represents the classical James-Martin expression⁵. The shape of the function $p_0(x)$ is given in Fig. 1 and a net decompression appears near the column outlet.

Determination of p_1

Only p_1 will be calculated. We substitute the sum $p_0 + p_1$ for the variable p in eqn. (6). After linearization, the following equations, with dimensionless parameters, are obtained:

$$\frac{\partial^2 p^2}{\partial x^2} \approx \frac{\partial^2 (p_0^2 + 2p_0 p_1)}{\partial x^2} = \frac{\partial p_0}{\partial t} = \frac{2p_e p_e^{'} - 2p_e p_e^{'} x}{2|p_e^2 - (p_e^2 - 1)x|^{\frac{1}{2}}}$$
(10)

where p'_{e} is the derivative of the function p_{e} with respect to reduced time. A first integration with respect to x gives

$$\frac{\partial(p_0^2 + 2p_0p_1)}{\partial x} = \alpha + \frac{2p_e p_e}{(p_e^2 - 1)^2} \cdot p_0 + \frac{p_e p_e}{p_e^2 - 1} \int p_0 dx$$
(11)

where α is a constant. A second integration gives

$$p_0^2 + 2p_0p_1 = \alpha x + \beta + \frac{4}{3} \cdot \frac{p_e p_e^{\prime}}{(p_e^2 - 1)^3} \left(\frac{p_0^5}{5} - p_0^3\right)$$
(12)

where β is a constant.

For x = 0, we have $p_0 = p_e$ and $p_1 = 0$, hence β may be calculated as the initial conditions:

$$\beta = p_{e}^{2} - \frac{4}{3} \cdot \frac{p_{e}p_{e}}{(p_{e}^{2} - 1)^{3}} \left(\frac{p_{e}^{5}}{5} - p_{e}^{3} \right)$$
(13)

Fig. 1. Plot of p(x,t) versus x.

τ	<i>к/ŋ</i> *	p _e	b**	x*	<i>P</i> 0	<i>D</i> ₁	
4	1	2	10^{-3}	0.5	1.58	$-1.94 \cdot 10^{-4}$	
40	10-1	_	_	_	_	$-1.94 \cdot 10^{-3}$	
400	10^{-2}	_	_	_	_	$-1.94 \cdot 10^{-2}$	
4	1	2	10^{-3}	0.25	1.80	$-1.42 \cdot 10^{-4}$	
_	_	1.2	_	_	1.15	$-2.00 \cdot 10^{-4}$	
4	1	2	10^{-3}	0.5	1.58	$-1.94 \cdot 10^{-4}$	
_	_	—	10^{-2}	_	_	$-1.94 \cdot 10^{-3}$	
_	_	_	10^{-1}	_	_	$-1.94 \cdot 10^{-2}$	
40	10 ⁻¹	2	10^{-3}	0.25	1.80	$-1.42 \cdot 10^{-3}$	
_		_	_	0.50	1.58	$-1.94 \cdot 10^{-3}$	
-	-		_	0.75	1.32	$-1.50 \cdot 10^{-3}$	

EFFECTS OF THE REFERENCE TIME τ AND THE PROGRAMMING RATE b ON THE TERM p_1

* Values are expressed in s atm m⁻² for a column of length L = 2 m and outlet pressure $p_s = 1$ atm.

****** Values are expressed in atm s^{-1} .

For x = 1, $p_0 = 1$ and $p_1 = 0$, we obtain

$$\beta = 1 - p_{e}^{2} + \frac{4}{3} \cdot \frac{p_{e}p_{e}^{'}}{(p_{e}^{2} - 1)^{3}} \left(\frac{4}{5} + \frac{p_{e}^{5}}{5} - p_{e}^{3}\right)$$
(14)

and finally

$$p_{1} = \frac{2p_{e}p'_{e}}{3p_{0}(p_{e}^{2}-1)^{3}} \left[\frac{4x}{5} + (x-1)\left(\frac{p_{e}^{5}}{5} - p_{e}^{3}\right) + \left(\frac{p_{0}^{5}}{5} - p_{0}^{3}\right) \right]$$
(15)

 p_1 is a linear function of the space variable x and is dependent on the type of programming of the inlet pressure.

TABLE II

VALIDITY OF THE APPROXIMATION $p^2 \approx p_0^2 + 2p_0p_1$: MAXIMUM VALUES OF b FOR DIFFERENT VALUES OF τ

τ	κ/η^{\star}	Maximum b**	
400	0.01	$5 \cdot 10^{-3}$	
40	0.1	$5 \cdot 10^{-2}$	
4	1	$5 \cdot 10^{-1}$	

Column length L = 2 m and outlet pressure $p_s = 1$ atm.

* Values are expressed in s atm m⁻² for a column of length L = 2 m and outlet pressure $p_s = 1$ atm. ** Values are expressed in atm s⁻¹.

TABLE I

Conditions*	Method	*x										
		0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	I
	A 8	4.50 ₀ 4.50 ₀	4.26 ₄ 4.26 ₅	4.02 ₀ 4.02 ₁	3.764 3.766	3.49 ₅ 3.49 ₇	3.20 ₈ 3.21 ₀	2.89_7 2.90 ₀	2.55 ₃ 2.55 ₆	2.16 ₀ 2.16 ₃	1.68 ₁ 1.68 ₄	1.00_{0} 1.00_{0}
-	BA	2.25 ₀ 2.25 ₀	2.24 ₈ 2.24 ₉	2.14 ₃ 2.14 ₄	2.034 2.034	و191ء 1.91ء	$\frac{1.79}{1.79_8}$	1.66 ₇ 1.66 ₈	1.52 ₇ 1.52 ₈	1.374 1.374	1.20_{1} 1.20_{2}	1.00_{0} 1.00_{0}

DF p (atm) OBTAINED BY THE PRESENT METHOD (A) AND A NUMERICAL METHOD (B) ²
COMPARISON OF p (atm)

Application to linear flow programming

Linear programming was chosen to test the present method; the function h(t) is written as

$$h(t) = bt$$

Two parameters have an important effect on the term p_1 (see Table I); the reference time, $\tau = 2\eta L^2/\kappa p_s$, and the programming rate, b. The validity of the approximation $p^2 \approx p_0^2 + 2p_0p_1$ is limited by the values of b. Table II shows the maximum values of b for different values κ/η , with an error for 0.3% in the pressure p, the inlet pressure being 2 atm.

From Table III, it is possible to compare the present method (method A) with a numerical method (method B) used in previous work³. Method B gives a polynomial development of the pressure profile. There is good agreement between the two methods.

CONCLUSION

A continuous change in flow causes a departure from a steady state. The assumption that the time-varying pressure profile along the column is the same as that existing in constant-pressure operation for a given inlet pressure value is not satisfactory⁶, so we have added a perturbation term to the classical pressure profile of James and Martin⁵ to obtain the actual profile. A flow variation at the column inlet give rise to a perturbation that reaches the column outlet at a time t_L , which is usually small. The present method is rigorously applicable to pressure distributions after this time. In the theory, a second-order term is neglected owing to its smallness when the programming rate is not too high; when the permeability of a column decreases, the maximum programming rate likewise decreases. The results are in good agreement with those obtained by numerical methods.

REFERENCES

- 1 P. D. Schettler and J. C. Giddings, Anal. Chem., 37 (1965) 835.
- 2 B. Devallez, J. Larrat and J. M. Vergnaud, C.R. Acad. Sci., 277 (1973) 411.
- 3 L. Jacob and G. Guiochon, Bull. Soc. Chim. Fr., 12 (1971) 4632.
- 4 B. Devallez, G. Cognet and J.-M. Vergnaud, J. Chromatogr., 109 (1975) 1.
- 5 A. T. James and A. J. P. Martin, Biochem. J., 50 (1952) 679.
- 6 J. D. Kelley and J. P. Walker, Anal. Chem., 41 (1969) 1340.